Lesson 9. Machine Scheduling

Problem. The Markov Micromanufacturing Company has 9 production jobs it needs to process in the next 24 hours. The company has 4 identical machines that run in parallel. Each of these 9 jobs must be run on one of these machines **nonpreemptively**: that is, once a job is started on a machine, it must stay on that machine until it is completed. The processing times of these jobs are given below:

job	1	2	3	4	5	6	7	8	9
processing time (hours)	7	7	6	6	5	5	4	4	4

The company wants to minimize the makespan, or the completion time of the last job to finish processing.

- Let *m* be the number of machines in this case, m = 4
- Suppose we schedule the jobs using the longest processing time first (LPT) rule:
 - First, schedule the *m* longest jobs on the *m* machines
 - Whenever a machine becomes free, put the longest unprocessed job on that machine
- Idea: LPT puts shorter jobs towards the end of the schedule, where they can be used to balance the loads on each machine
- For our problem, this yields a schedule that looks like this:

- This kind of diagram is known as a Gantt chart
- Therefore, the makespan for the LPT schedule is

15

- It turns out that the makespan of an LPT schedule is always at most $33.\overline{3}\%$ larger than the minimum makespan
- So... can we do better?
- Let's formulate this problem as a dynamic program

• Stages:

• States in stage *t* (nodes):

• Decisions, transitions, and rewards/costs at stage *t* (edges):

Shortest/longest path?

Shortest

- Minimum makespan \leftrightarrow Length of shortest path
- Assignments of jobs to machines \leftrightarrow

Examine edges in shortest path.
e.g.
$$((t_{n_1,n_2,n_3,n_4}), ((t+1)_{m_1,m_2,m_3,m_4}))$$
 If $n_i \neq m_i$, then assign job t to machine i